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SYNTHETIC FIBRE We continue 
explore the possibilities of the MIDI 
interface and look at how synthesised music 
is likely to develop 

to 

FIRM OFFER The Apple IIcis an 
upgraded new model. We review it 
thoroughly and scrutinise the marketing 
strategies of Apple | 

PIECE WORK We construct two simple 
shapes to illustrate the principle of 
procedures in LOGO 

FIBONACCI SEQUENCE TO FILE 
MAINTENANCE A weekly glossary of 
computing terms 

TYPE CAST A Basic program for the 
Commodore 64 that will enable you to 
create and manipulate your own characters 
on the screen : 

library of subroutines will save time and 
programming effort 

SIMPLE ARITHMETIC We perform 
simple calculations using the 6809 5 if 
instruction set 

THE TECHNOCRATS Memotech built its 
reputation on its expansion packs for ABD 
Sinclair. Now it makes its own computers 

SWITCHED ON We show how to builda 
relay device that will enable you to control 5/4 
low power electrical devices 7 

INSIDE 
REFERENCE MANUAL A reference card pack 
that complements the machine code course COVER 

COVER PHOTOGRAPHY BY MARCUS WILSON-SMITH 
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Of all the available microcomputer-based 
music systems, MIDI offers the widest 
range of applications. Musicians use the 
interface to upgrade performance 
capabilities, both live and in the studio. And 
MIDI offers the home computer owner a 
way into the world of electronic music. 
Se eee ae ES Sess aS 

In education, MIDI offers some very real 
advances, both in schools and. in the home. 
Learning to read music is often difficult, even 
when the learner is already quite competent as a 
performer. The early stages of working out such 
things as sharps and flats and time signatures can 
be laborious and time-consuming, and the 
connection between the marks on the paper and 
what is actually heard rarely seems obvious. 
A major part of the problem lies in the nature of 

music itself: in order to make any sense, it has to be 
a series of events occurring through 
only way that a beginner can keep track of the 
visual notation is to keep stopping the music in 
question, then all the time-duration indicators in 
the score become pointless. Similarly, the 
beginner may spend some time in trying to 
interpret a particular bar or sequence; while this is 
being done the music will have moved on to 
something quite different. 

MIDI removes these obstacles. It can enable a 
synthesiser performance to be stored in a micro’s 
memory and, with the appropriate software, will 
give a graphic display of the music being played. 
This is an invaluable aid to any music student — it 

time. If the 

means that if, say, a Middle C is played on the 
synthesiser keyboard, then a Middle C will be 
shown on the five-line stave on the display screen. 
Ifa B minor chord is held down for a certain length 
of time, the harmonic components of the chord — 
B, D and F — will be displayed, together with the 
appropriate duration. 

This idea could be extended by software that 
plays a pre-programmed piece of music on the 
interfaced synthesiser while a fully notated score 
rolls by on the screen. In this situation, both the 
music and its notation could be stopped 
simultaneously and re-run from a specified bar 
number if the user encounters a problem. In 
addition, the overall sound of the music could be 
varied by changing the control parameters on the 
synthesiser — thus introducing the user to the art 
of arranging. 

Once a degree of confidence in reading music 
has been attained, then it should be easier to write 
music with the aid of the alphanumeric computer 
keyboard. This may involve entering performance 
data without any immediate reference to a sound 
from the synthesiser and then testing the result 
against the original intentions. Once this more 
advanced skill is acquired, five-line stave notation 
could be discarded in favour of another system 
such as MCL (music composition language). For 
electronic music, an MCL is a more appropriate 
means of entering data as it includes specification 
of characteristics exclusive to electronic sound 
production. No standard has been developed for 
MCL application — each machine has its own 
MCL. Stave notation, although a_ useful 

THE HOME COMPUTER ADVANCED COURSE 56f 

New Sounds, New Style 
One of several new synthesisers 
in the DX range from Yamaha, 
the DX7 incorporates a method 
of building sound, FM synthesis, 
previously restricted to 
machines costing thousands of 
pounds. Instead of taking an 
existing sound and modifying it 
by passing it through filters or 
adjusting envelope controls, the 
DX7 creates it own complex 
sounds by combining six 
waveforms in a variety of ways. 
As a result, the DX7 
approximates the sounds of 
acoustic instruments much 
more closely than other 
synthesisers. The DX7 also 
incorporates breath control, so 
a musician can blow into a 
receiver and add breath-like 
variations to saxophone or 
trumpet sounds, for example. 
The DX7 can use ROM packs 
with prerecorded sound 
characteristics, or it can store 
sounds you create on RAM 
packs. The DX7 sells for about 
£1,400 
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sunieaiitd visual guide is a system that sieaiies 
electronics by several centuries, and cannot 
accommodate all the new notations required for 
electronic music. | 

For many microcomputer owners, 
understanding stave notation or MCL will be the 
key to getting the most from MIDI. For students in 
schools and colleges, a major obstacle is the 
present character of music education. For most 
music students, the accepted area of study is still 
firmly based in European classical music. The 
majority of classical musicians and teachers 
identify electronic music with the more avant- 
garde or radical composers of the last two 
decades, and, to an extent, with contemporary 
pop music. Neither of these fields is accepted as 
being on a par with classical music. In fact, some 
classicists would even question whether they were 
‘music’ at all. 

It seems unlikely, therefore, that MIDI’s 
educational potential will be much explored in the 
mainstream music curriculum, especially since 
computing skills are required. in addition to 
musical electronics. ‘There can be few computer 
science courses with sound-proofing facilities that 
are adequate for a class of MIDI synthesiser 
players. If MIDI proves to be popular in such an 
environment, a simple solution such as the use of 
headphones will be required. But, as most MIDI 
units are designed to interface with one or more 
synthesisers, several signals would be required to 
deal with this. Even at a basic level, MIDI use in 
education implies the development of computer 
music studio facilities, and it would seem to 
require an active involvement by computer 
science students as well as by music pupils. 

For live performances, MIDI is primarily a 
means of integrating a number of synthesisers, 
sequencers and drum machines into a single 
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| Synthesised 
Sound 
Recently, several 

: synthesisers that are activated. 
_ from the strings of aguitar 

father than the keys of a piano. 
The Roland GR700 uses 
standard guitar strings. 
Complex sound information is 

picked up by a hexaphonic 
_ (six-sound) input and sent to 

- guitar parameters are added. A 
more exotic approach to the 
same technique is the — 

 SynthAxe, a 6809- controlled 
_ synthesiser. The SynthAxe, a 
development prototype, picks 
up sound data from an 

the string and the fret. Sensors 
at the top of the neck pick up 

~ bending and sliding variations. 
Asecond set of strings anda 
small keyboard are used to 
Bc cate the sound 

| écoatrallable oye Ther most worrying possibility 
for musicians who use extensive sequencing in 
their performances is a loss of synchronisation 
between units, and a resultant musical 
breakdown. Performers as well known as the 
Thompson Twins and Howard Jones have been 
known to run tapes of their studio-recorded 
backing tracks while ‘performing live’, rather than 
take the risk. In theory at least, multi-synthesiser 
groups should have more trouble-free 
performances thanks to MIDI. 

One feature of this advance is that such sroups 
will no longer have the appearance of being 
‘multi-synthesiser’. Since the early 1970s, a 
synthesiser has generally been thought of as a _ 
keyboard instrument, with a number of parameter 
control knobs and sliders set in a fascia above the 
keys. But if one keyboard synthesiser is using 
MIDI to control a second or third, then there is no 
longer any necessity to have more keyboards than 
the one on the master instrument. As MIDI use 
becomes more general, so more ‘synthesiser 
modules’ are appearing on the market. ‘These are - 
simply the sound-generating and sequencing units _ 
that were formerly part of keyboard instruments. 
As these modules have little or no visual interest, 
there is no need for them to be present on stage. 

There is another development that pre-dates 
MIDI, but which is likely to gain more attention as 
the number of keyboards diminish. This is the 

- possibility of having electronic sound synthesis 
controlled by string-playing data from guitars, and 
by breath and mouth control data from wind 
instruments. Compared to the mechanical action 
of simply depressing a note on a keyboard, 
plucking a string or vibrating a reed involves more 
complex acoustic information being transmitted 
to the instrument in question. If this information is 
digitally encoded and transmitted via MIDI to an 

manufacturers have developed — 

the synthesiser where the non- 

electrical connection between. 
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off-stage synthesiser module, there is no reason 
why a saxophone player cannot be the primary 
controller of a group’s electronics — even of its 
drum machine. Yamaha has incorporated breath 
control into its DX7 synthesiser, and the 
SynthAxe — a recently developed digital guitar — 

_ has been designed to use MIDI for controlling the 
output of a Fairlight. 

This means that a string sound on the Yamaha 
could be produced with the unique performance 
characteristics of a saxophone, and, similarly, a 
Fairlight trombone sample could be articulated by 
strumming a guitar. Although neither of these 
developments is imminent — after all, the 
SynthAxe is a very expensive ‘guitar’ at £7,000 — 
they indicate probable tendencies for live 
performance in the near future. There is likely to 
be a gradual reduction in on-stage keyboards; 
string, wind and possibly tuned percussion 
instruments such as vibraphones will become 

more important, and, as sound-sampling 
technology becomes cheaper, acoustic sound may 
well be predominant. 

By the end of the 1980s, musical traditionalists 
may be relieved to see — once again — ajazz-style 
unit of guitar, saxophone, double bass and drums. 

_ They may, however, be confused by the fact that 
the guitarist is playing an invisible vibraphone and 
the sax-player is ‘breath-drumming’. - 

For many groups used to live performance, the 
first experience of an advanced recording studio 
can be intimidating. They are presented with 
musical instruments and operating systems they 
have never encountered before and are allocated a 
producer who may not know their work or their 
intentions particularly well. Yet they are expected 
by their record company to produce ‘bigger and 
better’ versions of their stage hits in this unfamiliar 
environment. It is comparable to putting a semi- 
professional theatre company onto a big-budget 
film set and expecting an instant box-office 
success. Sometimes the transition is successful, 
and all concerned are satisfied. But very often, the 
original ideas get lost in a maze of studio devices, 
and the group is left with an expensive failure. 

Most often the breakdown point occurs when 
the group discards its own familiar equipment — 
and, in effect, its own ‘sound’ — and takes to the 
more desirable instruments available in the studio. 
But an idea which worked on a Mini-Moog 
synthesiser may fall apart when played on a 
Fairlight digital sampling computer and, if this 
type of musical failure occurs often enough, then 
the justification for using such a studio begins to 
weaken. 

If, however, the musicians in the group are 
familiar with MIDI, and if a microcomputer has 
been used for storing sequences and other musical 
control data, then they will be familiar with the 

_ procedures already in use in advanced studios. On 
the most immediate level, it should be possible to 
try out ideas using a succession of different studio 
instruments with the minimum of difficulty, and 
with the prior knowledge that ideas and sequences 

can be transformed simply by swapping 
synthesisers. 
A MIDI background is also invaluable when 

getting to grips with studio systems other than 
those directly involved in sound-generation. A 
solid-state logic mixing desk, for example, has a 
dedicated computer that will recall and re-run any 
series of decisions made in the final stages of 
recording — known as mixing. When all the music 
has been recorded onto 24 separate tracks of tape 
— guitar on one track, backing vocals on another, 
lead vocals acrosss three others, and so on — the 
crucial task of balancing and mixing all the 
elements begins. It is usually at this point that 
individual parts are treated with any required 
‘effect’ to enable them to stand out or blend im the 
mix. A_ single trumpet note may need 
reverberation added at one point only, and with 
23 other things happening at the same time it is 
easy to miss it. Using a computer to handle such 
incidents while mixing is like SABRE ae on 
a grand scale. 

_ Another technique, originally der oped for 
aden synchronisation and editing, but emerging 
more into music production, is the use of time- 
code. Time-code is like a digital clock and trigger 
signal, but is laid down onto tape. It uses 80-bit 
words to provide synchronisation data when 
recording music against video sequences, and 
enables musical events and split-second video 
edits to be sequenced together. 

Musicians, therefore, have good practical 
reasons for acquiring 
instruments — but, in addition, MIDI is a good 
introduction to the more advanced music systems 
currently in use. In the next, and final, instalment, 
we will take a look at some of the more exotic 
computerised music equipment in use today. 

MIDI-compatible | 

Big Science 
Laurie Anderson, New York 
poet and performance artist, 
combines an unusual mixture 
of sounds and sound © 
equipment with film, tape, and 
video technology to create a 
unique style. In songs like ‘O 
Superman’ and ‘Mr 
Heartbreak’, she uses or is 
backed up by anything from 
African bells to state-of-the-art 
electronic instruments such as 
the Vocoder and Synclavier 
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We have already seen that the LOGo user can 
define procedures to carry out sequences of 
commands. Procedures, once defined, may 
be used in exactly the same way as LOGO 
‘primitives’ (the basic commands of the 
language). It follows, therefore, that we can 
use procedures in the definition of further 
procedures. We show you how. 

As an illustration of this principle, let’s consider 
the tangram puzzle. This is a square that has been 

_ divided up into seven geometric pieces, which are 
combined. in various ways to form different 
shapes. In our example, we will use the seven basic 
pieces to create a shape that resembles a dog. We 
start by defining Loco procedures for each basic 

piece; these ‘piece procedures’ are then 
incorporated into a further procedure, which is 

_ given the name DOG. As the turtle must be 
correctly positioned before each piece is drawn, 
other procedures — MOVE1 to MOVE7 — must also 
be used. : 

It would be just as easy to produce this drawing 
by simply stringing one command after the other 
in one long procedure. Our method uses the 
principles of ‘top-down’ design. We have covered 
this subject in some detail (see page 476), but, very 
roughly, it simply means breaking a problem up 
into a number of parts and then proceeding to 
solve each part in turn. The great advantage of this 
approach is that the LoGo programmer may define 
a procedure containing subprocedures that have 
yet to be defined. The main procedure cannot be 

s 
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run, of course, until the subprocedures have been 
written or dummy routines provided in their place. 
To show how this works, let’s consider how the 
dog-drawing program was constructed. 

The DOG procedure was written first, even. 
though none of its component procedures yet 
existed. We then wrote each of the shape-drawing 
procedures separately. These were followed by the 
positioning procedures. Each time a new 
procedure was written, DOG was run to ensure that 
everything fitted together properly. When Loco 
came to a MOVE procedure that had not been 
written it stopped with an error message. 
However, it was easy to tell from the drawing 
whether everything up to this point was correct, or 
if there was an error in the last MOVE procedure. 
Our set of procedures demonstrates another 

important point — each of the shape procedures, 
and the DOG procedure itself, leaves the turtle state 
unaltered. That is, the turtle is at the same position 
with the same heading at the end of the procedure 
as it was before the procedure was run. Such 
procedures are said to be state transparent. Making 
procedures state transparent eases the task of 
putting procedures together to construct more 
complex drawings. Take the DOG procedure, for 
example: once the turtle is positioned we know 
that after drawing a piece the turtle will return to 
the position it was in when it started that piece. So 
we need know nothing about the internal 
workings of the procedures in order to put the 
pieces together. By making DOG state transparent, 
we make it easier to use this procedure as part of 
another — for example, we could draw a whole 
screenful of dogs. 

LOGO WORKSPACE 
By now you will have a fair number of procedures 
in the computer’s memory — so let’s take a closer 
look at LOGO memory organisation. LoGo’s 
working memory consists of a list of nodes (each of 
five bytes). Once Loco is loaded, you will have 
between 1,000 and 3,000 of these, depending on 
the machine you use. As procedures are defined, 
these nodes are used up. Other nodes may be used 

- as procedures are run or if variables (to be 
discussed later in the course) are used. 

The procedures you have defined constitute 
your workspace. You can see which procedures 
are held in the workspace by entering POTS (for 
PRINTOUT TITLES). To look at an individual 
procedure, use PO (for PRINTOUT) — for example, 
PO SQUARE. If a procedure is no longer required, 
workspace can be freed by using ERASE — the 
command ERASE SQUARE would remove the 
procedure called SQUARE from memory. Erasing a 
procedure releases the nodes used. Loco will 
mark these nodes, but will not yet add them to the 
list of free nodes; instead it will continue working 
with its present free nodes list until all of these have 
been used up. It will then go through its memory, 
gathering up all the nodes that have been released 
and using these to form a new list of free nodes. 
This process is referred to as garbage collection 

and is the reason why Loco seems to hesitate for a 
second or two from time to time. 

SAVING PROCEDURES 
In order to make permanent records of your 
procedures on disk, you must save the workspace 
as a file. Using MYPROCS as an example file name, 
you would type SAVE “MYPROCS (note the 
quotation marks before, but not after, the file 
name). The workspace itself will not be affected by 
this. The file may be loaded with READ “MYPROCS. 
This causes the procedures in the file to be defined 
and added to the current workspace. If a 
procedure is defined with the same name as a 
procedure already held in the workspace, then the 
new definition replaces the earlier one. 

Other useful disk-handling commands are 
CATALOG and ERASEFILE. CATALOG gives a list of all 
the files on the disk, and ERASEFILE “MYPROCS 
would erase the MYPROCS file from the disk. 
Cassette-based versions of Loco use different 
commands — the relevant manual should be 
consulted for these. 

Procedure Problems 
1) Write proceduresforthe ofcourse!) 
other tangram shapes 2) Write a procedure to 
shown. (You will first have draw a house (simply an 
to solve the puzzle of how equilateral triangle above a 
to construct the shape square). 
from the different pieces, 3) Write a procedure to 

Abbreviations 
| ERASE : 

| PRINTOUT : 
| PRINTOUT TITLES POTS 

draw a five-by-five board 
of squares. 
4) Rewrite the procedure 
used earlier to draw a Six- 
pointed star so that it uses 
subprocedures. 

POL 

LIZ DIXON 
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Uniform System 
_ Libraries of subroutines are 
useless without a uniform 
documentation system 
accompanying them. This is 
especially true for cassette 
users — inspecting the 
contents of an undocumented 

~ cassette by loading and listing 
each program is a thankless 
task 

LENDING LIBRARY 

It is extremely useful to develop techniques 
that make more efficient use of the time and 
effort spent in programming. We discuss 
one such method — creating libraries of 
routines that can be merged into programs 
— and list the sort of details that must be 
taken into account when programmers 
share the task of coding. 

Following the structured design methods that we 
have already described in this course may seem 
like a long-winded approach — but it does, in fact, 
save time (not only-in the coding but especially i in 
the debugging of a program). This is because 
programs that arecreated at the keyboard tend to 
have unnecessarily complicated structures and 
algorithms, which means that they take longer to 
write, are more prone to error and, because they 
are more difficult to follow, take much more effort 
to test and debug. Planning the program in 
advance simplifies the structure and the 
algorithms and thus leads to fewer aia errors 
and easier testing and debugging. 

Most importantly, designing ahead saves the 
programmer from writing a control or file 
structure that is later found to be inadequate 
(perhaps not enough space in a field in the file has 
been allowed for). Problems like this, which are 
fundamental to the way the program works, can 
lead to major portions of it needing to be 

rewritten. 
Those with a ‘proper’ 

keyboard may like to invest some time in learning 
to touch-type. Apart from this, though, there is 
little that may be done to increase the speed at 
which program lines are entered at the keyboard. 
However, the process of coding programs may be 
greatly speeded up in several ways. The first is the 
simplest: invent, adopt and use a number of | 
‘conventions’ when coding. Such measures 
include: using particular types of name for local 
variables to differentiate them from main program 
variables; beginning each subroutine at lines 
ending in 000; ending each subroutine with 
RETURN on a line of its own; starting each type of 
subroutine in a particular block of lines (file- 
handling routines between 9000 and 9999, 
utilities at 50000 onwards, and so on). 

The benefits of using these conventions are 
numerous: you don’t have to hunt for the menu 
routines because you know that they are always in 
the same place; you don’t have to worry about 

typewriter-style | 

whether you have used the same variable name in - 
the main program and in a subroutine — because 
its name will indicate it is a local variable. 

PROGRAM LIBRARIES 
Such coding techniques are also useful when 
libraries of programs are created. A  well- 
organised library of subroutines can save as much 
as half of the coding time on a large program. The 

MIKECLOWES 
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best way to start such a library is to go through 
existing programs and take out all the subroutines — 
that are well written and have some general 
applicability (I/O routines, date routines, upper 
to lower case conversion, and so on). Each routine 
should be saved as a separate file, and these should — 
be grouped together according to function (if they 
are to be stored on tape then each function group 
should be stored on a separate cassette) with 
meaningful file names to identify them. Keep a 
card index or a database of the filenames, together 
with a description of what each routine does. 

_ Needless to say, it is important to ensure that all 
library routines are thoroughly tested and 
debugged. They will be used in programs for 
which they were not specifically designed, so 
make sure that they will trap any illegal input 
values. You should also ensure that any values 
output from the library routines will not cause 
problems to the program that uses them. Make 
each routine as efficient as possible and include as 
much internal documentation as is necessary for 
you to understand the routine’s function at a later 
date. Add to the collection as the need arises — 
there is no point in adding new routines ‘on spec’ 
as experience shows that this is largely wasted 
effort. Don’t forget to number the lines of the 
library routines according to the convention 
established (this will save on RENUMbering when 
the routines are merged into a new program). 
Useful library routines may be found in computer 
magazines, which often publish routine listings as 
well as complete programs (and these can be 
cannibalised to obtain the useful subroutines). 

To make use of a library like this, it is necessary 
to have a way of merging routines to gether to form 
a complete program. For those using compiled 
languages, a ‘link-loader’ or similar program is 
usually supplied; this takes compiled modules and 
joins them to make an executable program. For 
BASIC programmers, unless a compiler is available, 
the easiest way to achieve this is to use a 
combination of RENUMber and MERGE commands. 
To merge a library routine into the new program, 
first load the program, decide where the library 
routine will go and make sure there is a large 
enough block of unused line numbers for it to fit 
in. If necessary, RENUMber the library routine so 
that it will go into the space allotted to it. Then use 
the MERGE command to join the two programs; 
check that everything works as it should and SAVE 
the new program with the library routine in place. 

GROUP EFFORTS 
It is often the case that home computer users work 
together in groups to write programs — either at 
school or in their user clubs. Most of what has been 
said about program ‘design and programmer 

efficiency is particularly relevant to such team 
efforts. In fact, most of these ideas and the concept 
of structured programming were developed in 
order to split the workload of commercial 
programming projects. Thus, a number of 
different programmers could work on different 

parts of the same program at the same time to 
produce a working program. | 

For BASIC programmers to work like this, it is 
essential to agree on the conventions to be used . 
when coding. Assuming that a design has been 
agreed on, the programmer of an individual 
module needs to know: 

1) What the files will be and how they will be 
organised. 
2) What conventions have been agreed for 
naming variables. The most important variables, 
such as arrays that are used throughout the 
program, should be named in advance. A 
convention should be agreed for naming local 
variables. Variables that are passed between 
modules should either be named in advance or a 
way of ensuring that each is unique should be 
devised — adding the module number of the 
originating module as a suffix, for instance. 
3) What library routines are available to the group, 
the format of each of these, how their variables are 
named, what they do, and how well tested and 
debugged they are. 
4) How error-handling routines are organised (for 
instance, whether each routine copes with its own 
errors or whether the routines set an error ‘flag’, 
which is then dealt with by the control routine). 
5) The exact function of any module that is being 
written. | 
6) The exact range and type of data that each 
individual module will accept as input and return 
as output. 

This implies a lengthy planning stage with many 
meetings to agree strategy, followed by a short 
programming stage. Testing — including the 
testing of group-produced programs — will be 
dealt with later in the course. The next instalment 
will concentrate on the design of programs that 
will run faster and use less memory. 
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FIRM OFFER 

Portable Upgrade 
Apple's new, upgraded portable 
version of the Apple Il; is the Ile. 
The llchas 128K of RAM, an 80- 
column display, a variety of 
interfaces and a built-in disk 
drive. The Ilc costs £925, and is 
shown here with the optional 

CHRIS STEVENS 

With the introduction of the Macintosh, 
Apple Computer has firmly established its 
name in the UK market. More recently, the 
company has turned its attention to 
upgrading its existing line of 6502 machines 
— the Apple II family. We examine the new 
Apple Iic computer, and consider the 
company’s marketing strategy. 

The success of the Macintosh, and increased 
competition — in the US home computer market 
from Commodore and in the world business 
market from companies like ACT and IBM — had 
put the future of the Apple II range of computers 
in. some doubt. Many dealers and industry 
analysts predicted that the range was nearing the 
end of its market life, despite Apple’s insistence 
that it would remain committed to the 6502 
machine and its large user base. To demonstrate its 
support, the company recently launched the 
Apple IIc, as well as software and hardware 
upgrades for the older Apple II lines. The new 
products are expected to extend the market life of 
the Apple II by as much as three years. 
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II helped to create the personal computer market, 
dominated US computer sales for several years 
and contributed to Apple’s total sales record of 
over $1 billion. There are over two million Apple 
computers in use worldwide, yet the Apple II has 
never reached the same level of sales success in the 
UK or other parts of Europe, primarily because of 
ineffective pricing and marketing policies. At 
£1,500 (including monitor and disk drive) the 
machine was priced much too high to be 
considered a home computer. And interference 
from Apple headquarters in California is often 
cited as the reason why Apple has never gained the 
kind of share of the UK educational or business 
markets that it has in America. Nevertheless, the 
relatively small group of Apple users in the UK 
tends to be fiercely loyal to the machine. 

The latest incarnation of the Apple II is the IIc 
(the c stands for compact). It is smaller than its 
predecessors by about half, yet houses a half- 
height 5zin disk drive in the side of its casing. At 
3.4kg (7.51b), the I[cis meant to be transportable, 
and is clearly designed to be used during the day at 
work and then to be carried home at night. 
Towards this end, the IIc has a small carrying 
handle moulded into its plastic case, and a choice 
of connectors (for use with a composite or RGB 
monitor at work and a standard television set at 
home). The carrying handle folds back to prop the 
machine up into a comfortable working angle. 
This also keeps air circulating around the machine 
to prevent overheating. 

Unlike the previous Apple II models, the IIcisa 
closed system, with no expansion slots inside. 
Instead, Apple has built several of the most 
important options into the machine. These 
include the monitor and television display ports; a 
joystick port that also supports the optional 
mouse; a modem port; a printer port; an audio 
output socket and a connector for a second disk 
drive. The interfaces are labelled with icons — 
small pictorial representations of their function. 
The IIcalso has a built-in 80-column display, and 
128 Kbytes of RAM. Most of these features are 
optional on the Ile, and would require the addition 
of at least three plug-in expansion cards. 

The Apple IIc has a 63-key QWERTY 
keyboard, with a similar layout to the Ile. The 
Reset key, however, has been moved to a position 
above the left edge of the keyboard, and two small 
switches have been added next to it. The left switch 
toggles the screen display between 40 and 80 
columns. The owner’s manual recommends that 
you use a 40-column display when working with a 
television set, and an 80-column display for a 
monitor. (Some of the existing Apple software will 



display only 40 columns, regardless of the switch’s — 
position.) The second switch toggles between the 
European character set and the North American 
characters shown on the keyboard. This is useful 
when a character is required that can only be found 
in one of the two sets (such as ‘#’, which is replaced 
by ‘£’ on the European keyboard). There are two 
lights above the right edge of the keyboard: one 
indicates when the power is on, and the other 
lights when the disk drive is in use. 
When you power up the IIc, the disk drive 

automatically starts spinning and looks for a disk. 
It will continue to spin until a disk 1s found, or until 
the Reset key is pressed while the Control key is 
held down. With no disk in place, the Ic loads 
Applesoft Basic from ROM. Applesoft has been 
virtually unchanged since the Apple II+ was 
introduced. It varies only slightly from early 
versions of standard Microsoft Basic. The use of 
Applesoft makes it possible for the IIc to run 
Applesoft programs written for earlier models. 
Unfortunately, Applesoft lacks many of the 
programming structures available in more 
advanced dialects, such as BBC Basic. For 
example, Applesoft has no RANDOMIZE feature, 
AUTO line numbering facility, IF... THEN... ELSE 
structure or WHILE command. It also lacks CIRCLE 
and PAINT commands for graphics programming. 
When there is a disk in the disk drive, the IIc | 

runs either DOS 3.3 (Apple II+- and Ile disks) or 
the new Apple operating system, PRODOS. This 
is a derivative of the operating system Apple 
designed for its first business system, the Apple III. 
PRODOS has a hierarchical (tree) filing structure. 
Disk files are stored in much the same way that 
documents are stored in a filing cabinet. Thus, all 
files that relate, for example, to project ZED could 
be filed on the disk under the heading ZED. The 
accounting files of project ZED — such as Costs, 
Sales, Revenues — could be gathered into a group 
called Accounts. With a manual filing system of 

this type, when you wanted to find the file for 
Sales, you would first open the main file, ZED, . 
then open the Accounts file, and finally pull out 
the file marked Sales. In PRODOS, this is done via 
a ‘pathname’ that lists the appropriate file names in 
order, so the process we have just described would 
be accomplished by typing the file names, 
separated by slashes: 

/ZED/ACCOUNTS/SALES/ 

Pathnames can be up to 64 characters long. This 
process may seem complicated, and in fact it does 
take a while to get used to, but in the long run it 
simplifies the organising and management of disk 
files. Tree filing systems like PRODOS are also 
used in MS/DOS, the operating system used on 
the IBM PC. . 

The screen display of the IIc is also an 
improvement on previous models. Besides two 
text options (24 lines by 40 or 80 characters), the 
IIchas three graphics screens: 40 by 40 (Lo-Res), 
280 by 192 (Hi-Res), and 560 by 192 (called 
Double Hi-Res). There are 16 colours available. 

CHRIS STEVENS 
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‘J/|> HIARDWARE/ APPLE IIC 

Apple offers a green phosphor monitor for £140, 
and is expected to introduce a flat-panel LCD 
display soon. The LCD screen will be 
manufactured for Apple by Sharp, and will have a 
full 24-line by 80-character display. It will 
probably cost about £500. It is expected that a 
battery pack for the system will be available soon, 
and this will enable the Apple IIcto become a fully 
portable computer. 

The greatest advantage the IIc has is its software 
base. Over 17,000 programs have been written for 
the Apple II. Although some of these programs 
are available only in America, you can still be fairly 
certain that anything you could want to do with an 
Apple has probably been done already, and 
appropriate software has been written. The 
software base includes some of the world’s best 
games programs (CHESS 7.0, ZORK, Microsoft 
Flight Simulator, Pinball Construction Set); a 
wide variety of word processors, spreadsheets and 
database programs; accounting programs; 
graphics design programs; scientific laboratory 
control programs and educational programs (from 
beginners’ readers to advanced calculus). 

In addition to existing II and Ile software, 
Apple has introduced a program called 
Appleworks, an integrated word processor, 
spreadsheet and database with windowing. 
Appleworks is quite sophisticated and easy to use. 
The IIc comes with a disk that introduces you to 
Appleworks, although it is not a working copy of 
the program. As is typical with Apple, the 
company presumes that you will eventually want 
to buy this £175 package. Other disks provided 
with the system are a similar introduction to Apple 
L0Go; Apple Presents Apple, an interactive 
introduction to the basic system; a very simple 
introduction to BASIC programming, and the 
PRODOS systems utilities disk. MousePaint, a 
mouse-driven: drawing program based on 
MacPaint, is also available. _MousePaint. is 
supplied with the Apple II mouse and costs £70. 
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Apple Disk Pack 
The Apple ile comes with a disk pack containing five disks. Four 
of them introduce the workings of the machine, BASIC 

_ programming, and optional applications programs that Apple 
hopes you will buy. The fifth is the system operations disk with 
PRODOS, Apple's new disk filing system for the Apple II line 

The IIc comes with a small pamphlet that 
describes how to set up the system, and a 142-page 
owner’s guide that briefly and clearly explains 
system operations and the use of the five disks that 
come with the computer. The manuals are well- 
written and colourfully illustrated. They are 
oe geared toward the first-time user. 

The IIc’s design is very attractive and stylish. 
Apple dropped the beige plastic used on the II, the 
Macintosh and the Lisa in favour of a bright white 
finish. The ‘racing stripe’ lines across the top of the 
case let air flow through to the circuits to keep the 
system cool. 

The Apple Ilc, like its ae ee ee is a great 
desktop machine for the office. With the added 
LCD screen and battery pack, which are expected 
soon, it should earn a reputation as a useful, 
portable workmate. Had the price been right, it 
could also have been a popular home computer. 

/ a 

—  r—SOa_ 

MousePaint 
The Apple Il mouse Is available for the Il+, lle and llc models for 
£70, and comes with MousePaint. MousePaint is based on 
MacPaint, but it is a scaled-down version of the Macintosh 
program. It allows you to use the mouse to create pictures very 7 
easily, and is written to take advantage of the Ilc’s high resolution 
Screen display. [0 use the mouse with other Apple || computers, 
you must have an extra interlace card that plugs into one of the 
internal expansion slots 

Composite Video Output 
RS232 Printer Port 

Power Supply 
The lic has an internal 12-volt 
power supply, but still requires a 
transformer box for 240-volt 
mains input 

RGB Video Output 
By plugging a small PAL adaptor 
into this port, the Ilc can connect 
to a standard television set 

Input/Output Controllers ~ 
These chips control keyboard 
operations, and input and output 
ports 

Audio Socket — 

This can connect the lIctoa an 

external hi-fi amplifier 

ROM = 
This holds Applesoft BASIC 
and the housekeeping routines 



+ 

APPLE lIC/HARDWARE 

APPLE HC 

128K RAM, 16K ROM 

24 lines of either 40 or 80 
characters. Three graphics display 

Disk Drive modes with maximum resolution 
The built-in 143K disk drive is of 560 x 192 pixels and 16 colours. 
compatible with most Apple I+ — 
and lle disks 

9-pin joystick port that doubles as 
a mouse port: RS232 modem 
port; RGB (or PAL TV) output: 
composite video output; external 
disk drive port, and RS232 printer 

A second disk drive can be 
connected directly to the lic here 

Applesoft BASIC resident in ROM: 
LOGO, PASCAL, FORTRAN 

63-key typewriter-style keyboard 
with four cursor keys, 
international character sets 

R'S232 Modem Port Avery colourful and easy-to- 
understand owner s guide comes 
with the machine. Ihe guide is 
clearly designed for the first-time 

_user. [here are also two slim Hand Control . 
This port supports a joystick or manuals to help you set up the llc 
the optional mouse and work with the systems utilities 

disk 

The lic’s greatest strength comes 
from its compatibility with the 
Apple Il, which means thatit can 
run most of the more than 17,000 
titles available for the other Apple 

128K User RAM 
This is double the amount that 
comes as standard with the The Applesoit BASIC, which hasnt 
Apple lle changed noticeably in six years 

and is beginning to show its age, 
lacks flexibility. [he Iles price may 
putit out of the range of many © 
home users. 

CPU 
The 65C02 chip is a CMOS 
version of the 6502. It requires 
less power than other versions 
of the chip, so it can be run from 5 

| a battery 
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TYPE CAST 
re i ily 

The version of Basic used on_ the 
Commodore 64 is not without limitations, 
although these are seldom a great obstacle 
to thoughtful and creative programming. We 
give you a program that enables you to 
define your own character set. 

Wile 

The Commodore 64 is capable of producing 
splendid sound and graphics — as much 
commercial software amply demonstrates — but 
its BASIC does not support a single ‘purpose-built’ 
colour or sound command. The BEEP, DRAW, INK 
and PAPER commands supported by Spectrum 
BASIC, for example, have no equivalents among the 
Sparse set of commands available to the 
Commodore 64 programmer. The result is that 
most BASIC programs have crude sound and 
graphics, and even the best programs tend to 
contain many DATA and POKE statements — as the 
listing with this article shows. The character- 
generating program that we list here makes the 
process of defining new characters less demanding 
by allowing you to design them on the screen 
(rather than POKEing values straight into RAM); 
these definitions are ‘then’ automatically POKEd 

into memory. | | 
We have already investigated in some detail the 

procedure involved in defining your own 
characters on the Commodore 64 (see page 232). 
The essential preliminary actions are performed in 
the subroutine at line 61000. The top of user 

136 
BS 
i 40 
203 
249 
eas 
eee 
een 
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memory is lowered from location 40959 to 14335. 
The entire two Kbyte upper case character set that 
the Commodore has resident in ROM (from 
address 53248 onwards) is then copied into RAM 
(14336 onwards) where it can be accessed and 
manipulated using PEEK and POKE statements. 
Finally, the VIC (video interface chip) is switched 
to address the relocated character set. 

Once the character set has been relocated in 
RAM, two ‘windows’ are displayed on the screen 
by the initialisation routine, and control passes to 
the input routine at line 2500. This routine scans 
the keyboard and maintains a flashing cursor in 
the left-hand or ‘edit’ window. The character 
currently being redefined is displayed (suitably 
magnified) in this window, with the values of its 
eight defining bytes next to it. 

The unshifted function keys (f1, £3, f5, £7) 
control cursor movement inside this window. The 
cell under the cursor (corresponding to a bit in one 
of the eight definition bytes) can be toggled on or 
off with the shifted function key £2. When this 
happens, the eight definition values are updated, 
and all occurrences of the character elsewhere on 
the screen can be seen to change immediately. 

Pressing the shifted function key £4 allows you 
to replace the character in the edit window with 
another character. Characters are described by 
their POKE (or screen code) values as listed in 
Appendix F of the User Manual. These values are 
not the same as the CHRS codes (although there is a 
correspondence), but are more convenient to use 
here since the character definitions are arranged in 
memory in the order of these codes. 

The shifted function key f6 allows you to write a 
‘character-sized’ copy of the character being 
edited into the right-hand (or ‘text’) window, at the 
position corresponding to that of the edit cursor. If 
the cursor is in the top left corner of the edit 
window, for example, and ‘A’ is the character being 
edited, then an ‘A’ will be written in the top left 
corner of the text window when f6 is pressed. 

Finally, pressing the exclamation mark key 
STOPs the program; CONT will restart it. When you 
‘quit’ or exit from the program, you can type 
NEW and then LOAD another program without 
disturbing your re-defined character set. 
However, there are problems involved with this. 
First of all, the top of user memory has been 
lowered so that there are only 12 Kbytes available 
for the new program. Secondly, switching off the 
machine destroys the new set. Both problems will 
be discussed in a future article. In the meantime 
you should note the definitions of your newly- 
defined characters and use them, if necessary, as 
shown in the sample program on page 233. 



USER-DEFINED CHARACTER GENERATORS/ PROGRAMMING PROJECTS 
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TO BLACK SOCKETS — Track Side ; RED SOCKETS 
| -. Take particular care with the 

track breaks on this board, 
especially the single breaks that 
separate the transistors 

A 

Bes TIP 122 
ne 

| 
TIP 127 

| i 
| MINICON PLUG: it 

| | 

| 7407 CHIP | 

| TRACK BREAKS @——@WIRELINKS °° 1K RESISTOR DIODE 

| 

| B 

_ 

| 
| 
| 
| BLACK SOCKETS 

| : _ |e |. : : TINNED WIRE 

| 
Component Side 
The TIP 122s are at the right- 
hand end of the board, and the 

| four diodes among them are 

i connected with the black end to 

| the edge track and the silver end 

to the next track. The ribbon 

. cable line from the black sockets 

' vee : | > be — ae 4 is soldered to the left-hand end 
| —2 4 l”rrC—CiCzia i . >» RESISTOR of this track. The other four 

| .. ss lUDr—r—.... : diodes are connected in the 

| opposite sense among the TIP - 
127s. The minicon plug can be 

| DIODE clearly seen on one end of the 

| TO BLACK SOCKETS a 

| WIRE LINKS » 
| | 
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NICK DALY 

FIBONACCI SEQUENCE 
Developed by a Florentine mathematician, 
Leonardo Fibonacci, in the 13th century, the 
Fibonacci sequenceis an infinite series of numbers 
in which each number is the sum of the two 
preceding numbers. The sequence begins with 0, 1 
and continues: 

1 (the sum of 0 and 1), 2, 3,5, 8, 13... 

The formal mathematical definition of the 

Fibonacci sequence is: 

F,=0, F,=1, Foy aan n2=0 

FIBRE OPTICS 
Optical fibres, made of extremely thin glass or 
plastic, can be used instead of copper wire for 
voice or data transmissions over very long 
distances. A single strand of glass may carry 
several thousand signals. Fibre opticsworks on the 
principle of internal reflection: light is held within 
the strand because it reflects inwards from the 
exterior surfaces. This means that the strands may 
be bent or twisted through sharp angles with no 
effect on transmission. We can illustrate this 
principle by considering a container holding 
water. A light source shines into the container and, 
because the walls are solid, the light remains inside 
until a hole is created in one wall, allowing water to 
flow out. The water carries the light with it in the 
same way that an optical fibre would, so the light 
actually bends as it flows with the water. 

The amount of information a fibre can carry 
and the quality of the signal transmitted both 
depend on the optical density of the glass. Cables 
constructed of optical fibres are non-conductive, 
which makes them useful in applications where 
normal conductive cables could present a safety 
hazard. They are also relatively secure, being 
much more difficult to tap into than ordinary 
coaxial cables. 
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FIELD 
In a database, a field is a group of data items under 
a specific heading. In a telephone directory, for 
instance, the surname is usually the first field, 
followed by the forename field, the address field, 
and the phone number field. A collection of fields 
comprising a defined range of information — a 
complete telephone book listing, for example — is 
called a record, while each individual piece of data 
(a specific person’s surname, for instance) is an 
entry. The number of characters contained in an 
entry is often restricted; the length being 
determined by the nature of the field — so a 
surname field might be limited to 26 characters, 
the telephone number restricted to 10, and so on. 

The word ‘field’ can also be used to refer to a 
descriptive element attached to a word or 
function. For example, in the address: 

the number 57367 can be referred. to as the 
instruction field. | 

FIFO 
An acronym for ‘First In First Out’, FIFO is one 
way of dealing with information held in a stack (a 
sequential data list in memory). The first element 
that is placed in the stack is also the first to be 
removed and acted on when the stack is filled. The 
stack may be manipulated in the opposite way, in 
which case it is referred to as LIFO (for “Last In 
First Out’). A FIFO list is also called a queue list or 
a pushup stack. 

FILE 
A fileis a collection of related information that is 
saved, altered and re-used after its creation. 
Computer files are saved to cassette or disk. They 
can contain whole programs, listings of 
programming instructions (often-used 
subroutines saved as library modules), data files 
that are loaded into other programs for specific 
applications, text files (such as memos, letters and 
other word processing documents), or graphic 
data for visual presentations. 

In a database, information related to a specific 
subject forms a file, which is acted on as a unit. For 
instance, in a database of company records all 
information concerning personnel would be held 
in a ‘Personnel’ file. To locate information about 
one particular employee, the database would 
search the Personnel: file, which would have its 
own location on the storage disk or cassette. 

FILE MAINTENANCE 
Several operations must be carried out on files to 
safeguard the information they contain and to 
ensure that such data is up to date. Making back- 
up copies of files, deleting out-of-date and unused 
records, and updating files are all part of file 
maintenance. Vital in a business or programming 
context, file maintenance is also essential in small 
databases, such as name and address files or a list 
of valuable items in a collection. 



SIMPLE ARITHMETIC 
It is now possible for us to take a detailed 
look at several machine code programs that 
Show how some simple arithmetic is 
performed using the 6809 instruction set. 
We pay particular attention to signed 
arithmetic, and the use of the condition 
code register. 

At this stage in the course, we can put some 
instructions together into a working program, 
although we will need to examine some new 
instructions and ways of representing data first of 
all. We will begin by devising a simple program 
that converts a binary coded decimal (BCD) 
number into its binary representation. 
A binary coded decimal number (see page 168) 

is a way of representing a decimal number in 
binary form that is particularly useful when 
dealing with eight-bit processors. Using this 
representation, each digit in a decimal number is 
translated into its binary equivalent. The decimal 
number 69, for example, is equivalent to the BCD 
representation %01101001: the leftmost four bits 
(0110) are the binary equivalent of 6, and the 
rightmost four bits (1001) are equal to the decimal 
9. Thus, using BCD, we get an entirely different 
decimal equivalent than we would if we were 
converting the binary number %01101001 (it is 
equivalent to 105 decimal). 

Our conyersion program will need a number of 
new instructions; let’s consider these in turn: 

@ LSR (Logical Shift Right): This shifts every bit of 
the operand one place to the right. ‘The rightmost 
bit is shifted into the carry bit of the condition code 

register of the processor, and a zero is shifted into 
the leftmost bit of the operand. 

@ AND: This logically ANDs each bit of a register 
with the corresponding bits of the operand, 
leaving the result in the register. This instruction is 
most often used to mask certain bits: if a register 
contains a one in a bit, then ANDing it with another 
bit will copy that second bit into the register; if the 
register bit contains a zero, then ANDing it will 
always result in a zero. For example, the effect of 
ANDing a register value of %00001111 with a given 
memory location is to copy the rightmost four bits 
only of the location into the register. Thus: 

% 00001111 Register value 
% 10110110 AND memory location value 
%00000110 Result in register 

@ MUL: This MULtiplies the contents of the A and B 
registers, leaving the result in the D register (the 16- 
bit register formed from A and B together). Very 
few other eight-bit processors support 

multiplication as an op-code. — 

@ SWI (SoftWare Interrupt): This is a convenient 
way of terminating a machine code program, 
returning control to the operating system. We shall 
examine this instruction in more detail when we 
consider the interrupt system later in the course. 
Here is the BCD-to-binary program: 

@ Specify value in location counter: 

ORG $1000 

@ Store BCD 58 in BCDNUM and reserve byte at 
BINNUM: 

BCDNUM FCB %01011000 
BINNUM RMB 1 

® Load BCD 58 into the A register and mask the 
lower digit. Store that digit in BINNUM: 

STARTLDA BCDNUM 
ANDA #%00001111 
STA BINNUM 

@ Load BCD 58 into A accumulator and shift upper 
digit (leftmost four bits) rightwards: 

SHIFT LSRA 
LSRA 
LSRA 
LSRA 

® Load 10 (decimal) into the B register and 
multiply by the contents of A: 

MULT LDB-_ #10 
MUL 

® The result is 16 bits in the D register, but as this 
result cannot be greater than 90 (10 X 9 = 90), 
only the lower byte of D is needed. The lower byte 
is in the B register — so add its contents to BINNUM 
and store the result: 

ADDITADDB BINNUM 
STB BINNUM 

® Thus, we have the BCD number in BCDNUM and 
the binary equivalent stored in BINNUM. We can 

_ finally return to the operating system and end the 
source code: 

RETURN SWI 
END 

TWO’S COMPLEMENT 
The programming examples we have given so far 
in the course have all involved simple arithmetic, 
and we shall continue in this vein for a little while 
longer. Let’s now look at the problem of sign — by 
which we mean positive and negative numbers. 
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The most common method of representing 
negative numbers in a computer memory location 

~ or register is the form known as two's complement 
(see page 328). To obtain the two’s complement of 
a binary number, we invert all the digits (change all 
the zeros to ones, and vice versa), and add one to 
the number. Thus, the two’s complement of 0101 
it 1011. | | 

But how is this used to perform mathematics 
involving signed numbers? First of all, let’s 
consider the range of numbers that can be 
represented: an eight-bit register can hold only | 
256 different bit patterns, which can be used to 
represent positive numbers in the range 0 to 255 or 
negative and positive numbers in the range -128 to 
127. (A 16-bit register can hold values from 0 to 
65535 or-32768 to 32767.) We give a table in the 
margin that shows how a four-bit binary 
representation is made for the decimal values from 
-7 to 7. 

If you look at the table, you will notice that 
the negative numbers all have a one in the most 
significant (leftmost) bit position. Similarly, all 
the positive numbers have a zero in the most 
significant bit position. 

As you can see from inspecting this four-bit 
table, we can define some basic properties for 
signed mathematics based on two’s complement: 

@ The two’s complement of a negative number 
gives its positive equivalent, and vice versa. 

@ The most significant bit is always zero for a 
positive number, and one for a negative number. 
This makes recognising whether a number is 
positive or negative very easy. 

® The two’s complement of zero is zero (1111 plus 
1). 14 

@ Addition and subtraction can be carried out in 
the usual way, and any given answer will have the 
correct sign. : 

You might like to try a few simple addition and 
subtraction sums to verify the legitimacy of the last 
property. Multiplication, however, is more 
difficult when using signed numbers. The MUL 
instruction that we used in the BCD-to-Binary 
program at the start of this instalment treats the 
contents of the A and B registers as unsigned 
numbers. If we want to multiply two signed 
numbers then we must program it ourselves. 

Anybody who has done any programming will 
realise that we are extremely limited in what we 
can do using the simple ‘linear’ programs that we 
have so far used in this course. We can only begin 
to do useful things by employing one of the basic 

- forms of control structure: 

@ Selection: in which we choose between two 
different courses of action (like the IF statement in 
BASIC) 

@ Repetition: in which we repeat a sequence of 
operations: | 
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1) while a certain condition remains true (the 
WHILE... WEND structure); 

-2)until a certain condition becomes true 
(REPEAT...UNTIL); or 

3) a certain number of times (FOR . . . NEXT). 

All of these structures depend on the ability to test 
a condition to see whether it is true or false, the 
most common sort of condition being whether a 
variable has a certain value or not. In Assembly - 
language, we need to use these structures, and will 
therefore need to be able to test the values in 
registers. We can usually test directly for only two 
possibilities (whether a value is zero or not, and 
whether it is positive or negative). With extra 
‘instructions, however, it is possible to carry out 
other sorts of test. 

CONDITION CODE REGISTER 
These conditions are made available by using the 
condition code (CC) register, which we briefly 
mentioned earlier in the course (see page 537). 
This is an eight-bit register, but unlike the other 
6809 registers, we are not interested in the value 
stored there. Rather, we are concerned with the 
state (1 or 0) of each of the eight bits individually. 
Five of the eight bits are devoted to conditions of 
the type we have been discussing, the other three 
are concerned with the handling of interrupts 
(which we will examine in detail later in the 
course). One of the five, H (the Half carry flag), is 
almost solely concerned with BCD arithmetic, 
and doesn’t concern us at present. The remaining 
four, which are important at this stage, are: 

@ C: The Carry flag, which holds the carry digit (or 
borrow in the case of a subtraction) from the most 
significant bit after an arithmetic operation. It also 
has a useful function when we want to shift the 
contents of an accumulator along by one bit; some 
of the shift operations put the bit that is lost off the 
end into C. This bit, for example, could be used to 
test whether a number is odd or even by having the | 
least significant bit shifted into it and tested. This is 
bit 0 (the least significant bit) in CC. 

@ \V: The oVerflow flag, which is set to one 
whenever the result of an arithmetic operation is 
too large for the register that is supposed to 
contain it. This is bit 1 in CC. 

@ Z: The Zero flag, which is set to one when the 
contents of a register are zero. This is bit 2 in CC. 

@ N: The Negative flag, which is a copy of the most 
‘significant bit (the sign bit) of a number in a 
register; in other words it is set to one if the number 
is negative. This is bit 3 in CC. 

It is one of the most difficult aspects of Assembly 
language programming to keep track of the state 
of the flags. Not every instruction will set the flags, 
and some flags are set depending on the contents 
of the accumulator while others can depend on 
other registers as well. The safest procedure is to 
test only on the values in an accumulator, and to 



do this at the point where the required value 
appears, since it is difficult to ensure that the flags 
are not changed by any intervening instructions. 

The flags are tested by means of ‘branch’ 
instructions, which are the low-level equivalent of 
the BAsic GOTO command. The 6809 uses relative 
(rather than absolute) branches almost 
exclusively. The difference is that a relative branch 
transfers control by so many bytes forward (or 
back), while an absolute branch transfers control 
to a specified address. The effect, however, is the 
same. It distinguishes between short branches, 
where the range is expressed in a single byte 
(-128 to 127), and /ong branches, which can go 
anywhere in memory. We will be using short 
branches only. 

The 6809 has a large set of branch instructions, 
and we will introduce these as we need them. The 
following examples illustrate the instructions used 
to test and compare the values held in the 
accumulators and the use of the branch 
instructions to select and repeat procedures. 

@ ANDCC: It is not possible to load values directly 
into the condition code register, but it is good 
practice to set all the flags you need to zero before 
you start using them. The easiest way of doing this 
is by using the ANDCC instruction, which operates 
just like an AND command, using zeros as masks in 
the bit positions we want to use. 

@ SUB (SUBtract): The operand is subtracted from 
the accumulator, which sets the C, V, Z and N flags 
on the result. (The H flag is also set if the 
subtraction is eight-bit). 

@ CMP (CoMPare): This works in exactly the same 
way as SUB, except that the contents of the register 
are left unchanged. As in SUB, the C, V, Z, N (and 
possibly H) flags are set. | 

@ BRA (the unconditional BRAnch): This is just like 
the Basic GOTO command. 

® BGT (Branch if Greater Than zero): This is a test 
for the signed numbers. The branch takes place ifZ 
is zero (the number is non-zero). To allow for the 
fact that the sign bit may be incorrectly set if 
overflow has occurred, either N must be zero and V 
also zero (straighforward non-negative) or N must 
be one and V also one (incorrectly negative due to 
overflow). Other similar tests for signed numbers 
are BGE, BLT and BLE. 

@ BLO (Branch if LOwer than zero): This is an 
unsigned test, since it is pointless inspecting N with 
unsigned numbers. The branch occurs if the C flag 
is set, indicating a borrow after a subtraction. 
Similar unsigned tests are BLS, BHI and BHS. 

@ A program to find the larger of two signed eight- 
bit numbers stored in $3000 and $3001. The larger 
of the two numbers to be placed in $3002. First 
label the numbers: 

NUM1 EQU 
NUM2 EQU 

$3000 
$3001 

ANS © EQU $3002 
_ ORG $1000 

@ The code begins: the condition code flags are set 
to zero and the first number is loaded. This is 
compared with the other number: 

ANDCC #% 11110000 
LDA NUM1 
CMPA NUM2 

@ If NUM1 is the larger, then the program branches 
to FINISH. Otherwise it loads the second number 
into the A register. Whichever number is in the 
register when FINISH is reached is then stored in 
ANS, and the program returns to the operating 
system and ENDs: 

“Bet. FINISH 
LDA NUM2 

FINISH ~— STA ANS 
OWI 
END 

Original Directives 
The differing effects that 
assembler directives and 
Assembly language statements 
have on the assembler’s 
location counter and on the 
contents of memory can be seen. 
in this example 
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THE TECHNOCRATS 
its Memopaks have exceeded 250,000 units. The 

Special Line 
Memotech began with 

_ specialised products for the 
Sinclair ZX81, such as the | 
Memopak, shown here, which 
provided the ZX81 with an extra 
32K of RAM 

Fruits Of Success 
After the success of its ZX81 

expansion products, Memotech 
_ advanced to new products. One 

such product is a line of 
| - computer peripherals, like the 

80-column dot matrix printer, 
the DMX 80. 
Memotech’s latest venture is the 
MTX512, a 64K home and small 
business microcomputer. The 
M1X512 can store data on. 
cassette, or on the optional 

floppy disk drive unit pictured 
here 

. machine. This was later followed by a whole series 

established its name as a manufacturer of 
useful add-ons and peripherals for the 

| Sinclair ZX81. Recently the company 
began producing its own range of home 
microcomputers — the stylishly designed 
MTX series. | 

Memotech was established as a result of the 
enormous public interest in Sinclair Research’s 
first microcomputers. Despite the popularity of 
the ZX80 and Z.X81, it was soon apparent that the 
machines were severely hampered by lack of 
memory, and a huge market for add-on memory 
boards was created. 

The company’s founders were both lecturers at 
Oxford University: Geoff Boyd lectured in 
metallurgy at Wilson College, and Robert 
Branton taught mathematics at Christ Church. 
The two men first met at a computer exhibition at 
the university in 1981, and decided to work 
together on add-ons for the ZX81. Their first 
product was a 16 Kbyte expansion board for the 

MEMOTECH 

of ‘Memopaks’, including 32 Kbyte and 64 Kbyte 
RAM packs, the high resolution graphics (HRG) 
pack, a spreadsheet analysis (Memocalc), a word 
processor (Memotext), Centronics and RS232 
interfaces and a keyboard. : 
When Sinclair Research released the Spectrum 

in 1982, Memotech decided against producing a 
range of add-ons for the new machine. Instead, 
using the experience and expertise it had gained in 
producing the hardware for the ZX81, Memotech 
chose to concentrate its resources on designing 

-and building its own machines. Tim Spencer, 
Memotech’s sales and marketing manager, 
explains: ‘We felt that the ZX81 was not going to 
last much longer, so we decided to build our own 

computer. We did have the technology, after all. 
But the ZX81 has lasted far longer than we 
expected, and our packs are still selling well.’ 
Memotech estimates that international sales of 
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packs, along with the MTX range of machines, are 
manufactured at the company’s headquarters in 
Witney, Oxfordshire. The firm currently employs 
110 people. | | 

The MTX range was officially launched in 
February 1984, and the company claims sales of 
about 25,000 machines since then. Like the BBC 
Micro, the MTX comes in two models: the 32 
Kbyte MTX500 and the 64 Kbyte MTX512. The 
machines use a Z80A microprocessor, and offer 
16 colours in high resolution mode (256 X 192 
pixels). The MTX sasic is similar to BBC Basic. 
The computer also features an on-board 
assembler/disassembler. 

The computer can also be expanded to make 
use of Memotech’s HRX graphics package. 
Starting with an unexpanded MTX500, the user 
can add disk drives and the three graphics 
controller boards: a 96-bit processor main 
controller board, a ‘Frame Grabber’ and a three- 
channel A/D converter. The resulting system is 
able to produce animations, picture composition 
and graphic design up to a full typesetting 

capacity. The system costs around £4,500. 
Asked about the design philosophy behind the 

MTX range, Tim Spencer said: “We are aiming at 
the more serious home user and the business 
market. The machines are not aimed at the games 
market, although of course you can play all the 
usual games on them.’ 

Because the MTX is capable of running CP/M, 
it can take ‘advantage of the range of software 
available. However, the company is aware of a 
lack of cassette-based software that would give the 
machine greater appeal to the less serious home 
user. There are currently only about 40 different 
cassettes available for the MTX, and the company 
is actively encouraging the development of more 
programs. ‘We have done quite a lot over the last 
few months,’ Tim Spencer commented. “We have 
close links with Continental Software, and PSS is 
writing for us.’ There will also be a number of 
educational packages in the near future. 



Here, courtesy of Motorola I iTonms od a ecvorere) V6 Iva concluding part of the 6809 programmer's 
reference card. 

| ecard 

OP Operation Code (Hexadecimal) 
Rome ok 

if 
+ 

Notes: 
1 

© oO + 7 =o 

2 

Number of MPU Cycles 

IN laglelcis @)) eigelelecian sh’atsi 

Arithmetic Plus 

Arithmetic Minus 

Multiply 

<i 

Of 2a 

(@forgajelicipatciaie en) 1s 

elacicis jalce 

Half-carry (from bit 3) 

Negative (sign bit) 

Zero (Reset) 

Overflow, 2's complement 

Carry from ALU 

Test and set if true, cleared otherwise 

Nee Nicece! 

@rolafol) cole) rere) aioe lis 

(@rolaler-) (Jari (eva) 

|Evere|[er=|| (e)s 

lrofefrer-|| =)are! 

| Worel[or-)| (a (oi Uiin7-) (e1¢ 

This column gives a base cycle and byte count. To obtain total count, add the values obtained from the INDEXED ADDRESSING Wielels table, 

in Appendix F. 
Bil clale| a4 aareny es) lal) (ells of fs) efit ole clay, er of 16 bit registers. 

The 8 bit registers are: A, B, CC, DP 

The 16 bit registers are: X, Y U, = 8 ve 

EA is the effective address. 

The PSH and PUL instructions recuire 5 cycles plus 1 cycle for each byte pushed or pulled. 

_ 516) means: 5 cycles if branch not taken, 6 cycles if taken (Branch instructions). 

SWI sets | and F bits. SWI2 and SWI3 do not affect | and F. 

lerelarelitroras Codes set as a direct result of the instruction. 

Value of half-carry flag is undefined. 

Special Case - Cary set it b7 is SET. 
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